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Abstract: Transition metal elements, alloys, and intermetallic compounds often adopt the body centered
cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with
gualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures
energetically favorable. To do so, we develop a tight-binding function, AEsar, @ function that measures the
energetic effects of transferring electrons within wave vector stars. This function allows one to connect
distortions in solids to the Jahn—Teller effect in molecules and to provide an orbital perspective on structure
determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net.
We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using A Esar, We rationalize
the differences in energy of these structures. We are able to deduce which orbitals are responsible for
instabilities in seven to nine valence electron per atom (e~/a) bce systems and five and six e /a fcc structures.
Finally we demonstrate that these results account for the bcc and fcc type structures found in both the
elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of
a theory of metal structure deformations based on loss of point group operation rather than translational
symmetry is presented.

Introduction

of the structure determining factors in alloys and intermetallics

As chemists, compare our understanding of discrete molecules'€Mains elusive to the chemistry community as a whole. For

and alloy structures.

guantum mechanical methods which allow the accurate deter-

mination of the electronic energy and simple orbital models
useful in the rationalization of these ab initio reséift$Chemists
thus have a varied and vivid picture of why ammonia is
pyramidal, Cr(CQOy octahedral, and £Bi0H12 an icosahedron.

For some extended structures (e.g. covalent solids and Zintl ©)

phases, in which ionic and covalent bonding coexist) our
understanding approaches that we have for molecules.

The situation is quite different for alloys and intermetallics.
Although we have powerful tools such as density functional
theory (DFTY 8 which permit the routine geometrical optimiza-
tion of many structures, and there is a rich literature of model
concepts for such systerfi23 the central theoretical framework
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In molecular chemistry one has both the practicing solid state chemist, our understanding of even

the simplest of alloy structures, the face centered cubic (fcc),
body centered cubic (bcc), and hexagonal closest packings (hcp),
is not nearly as sharp as the molecular chemist’s understanding
of the quite complex molecules.
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Figure 1. Dap to On to Dan distortion for (i) the body centered tetragonal
(bct) structure and (ii) an octahedron.

The goal of this paper is to build toward an understanding of

energy surfaces with a global minimum for one valuectaf
and local minima at yet other values. Nor are these local minima
calculational artifacts. Although in certain cases these local
minima are not stable to nontetragonal distortion modes, for
some transition metals it has even proven possible in epitaxially
grown thin films to isolate metastable phases which directly
correspond to the predicted local minima structffed’

In both the previously reported electronic surfaces and in the
electronic surfaces shown in Figure 2, bath of 1.0 andv/2
are energetically important in this body centered tetragonal (bct)
geometry. The former ratio, of course, corresponds to the bcc
structure. And, as we show in Figure 3, the latter ratio is actually
a face centered cubic n&tThus, as might have been anticipated,
both the bce and the fcc structures are global minimum energy
structures. There is, however, one interesting finding. For one
or another metal structure, bcc and fcc actually correspond to
saddlepoints and not minima. Some thought will show there is
no straightforward symmetry explanation for this latter finding.

In molecular chemistry such high symmetry saddlepoints are

alloy and intermetallic structure using concepts already familiar generally associated with the Jakheller effect3®41 A well-

to the chemistry community. Our focus is initially on the bcc
and fcc structures. We begin with DFT calculations (details

known example is for JahfTeller-unstable octahedral mol-
ecules®? This is illustrated in Figure 4. Here the octahedron is

provided in the section on calculational methods), not as a tool unstable both with respect to a deformation (e.g. low sfjn
to rationalize or predict structures, but essentially as a numericald®, andd®; the figure showsl’) to a geometry with four short

laboratory.

and two long bonds and to the one with two short and four

Consider a metal, say tungsten, in a body centered tetragonalong bonds. These are two phases ofgmibration. As in the

or bct cell, a structure in which there are two atoms in the

bcc and fcc cases, the high-symmetry geometry belongs to the

conventional unit cell, one at the cell corner and the other at O, point group, the low-symmetry geometry®a;. This formal

the body center (Figure 1i). On the left side of Figure 2 we
show the DFT energy of this cell as a contour surf&cAs
variables, the obvious unitless parametés, the axis ratio, is
employed, as well a¥/Vmin. The latter parameter is the ratio
of the given unit cell volume to the cell volume of the minimum
energy structure. The energy minima of this surface acaat
= 1.0 and 1.7, with a saddlepoint &&a = V2 between them.
Contrast this tungsten surface with that of its neighbor in the

analogy is recapitulated in Figure 1.

A question naturally arises: Are the saddlepoints found in
Figure 2 due to the solid-state equivalent of the Jaheller
effect? This possibility has been mentioned befSré® In this
earlier work, particular attention has been paid to how the
number of degenerate highest occupied crystal orbitals is
significantly reduced in going from the high-symmetry to the
low-symmetry structure. Here we are interested instead in

periodic table, rhenium (Figure 2, middle left). Re has one more applying many of the well-developed orbital concepts from our

valence electron per atom (&), and its energy surface is
markedly different from that of W. For example in R#a =

understanding of the molecular Jakfeller effect®42to the
guestion of metal and alloy structure. In this regard, it is known

V2is nota saddlepoint but an energy minimum. This change that simple tight-binding or HFekel theory can be used to
is even more pronounced if we keep the number of valence account for JahnTeller instabilities, and that indeed such

electrons per atom the same as Re but introduce ionitiyeed
one of the aims of our work is a theory of the geometric stability

formalisms often provide the most clear interpretations, captur-
ing the essence of the phenomenon. If this analogy holds, we

of alloy structures. Consider Talr, a compound based on the might expect that a tight-binding calculation will also have an

elements two steps to the left and right of Re in the periodic
table. As Ir is significantly more electronegative than Ta, the
Ta—Ir bond is partially ionic. Here we find the surface shown
at the bottom of Figure 2: thela 1.0 structure is a
saddlepoint, the global energy minimum iscé = V2, and a
second local minimum is found neafa = 0.8526

Such multi-valley electronic surfaces are well-known in alloys
and metal2/~31 Many of the transtion metal elements have
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Figure 2. Contour energy surfaces for W, Re, and Talr with LDA-DFT andgh¢iiickel methoc?®

one-electron calculation where a pairwise repulsive energy is

cla=V2 added to the attractive 'Hlsel energy. In Figure 2b,d we show
the results of au,-Huckel tight-binding calculation for W, Re,
o] Q --------- 8 (. ‘c and Talr. It can be seen that the one-electron calculations capture
TS T the essential energetics of the three systems, both in the location
‘ ,. ‘b ............ : ? of the energy minima and the energy saddlepdihEncouraged
aé_.; ______ @ é ': @ by these findings, we turn to developing an orbital-based tight-
v i ~ i binding model for the stability of elemental metal and alloy
" ________________ é structure$?

(55) Gweon, G. H.; Denlinger, J. D.; Clack, J. A,; Allen, J. W.; Olson, C. G.;
DiMasi, E.; Aronson, M. C.; Foran, B.; Lee, Bhys Rev. Lett. 1998 81,

Figure 3. Equivalence of/a = +/2 bet and fcc structure. 886.

energy surface similar to the DFT

(56) Rousseau, R.; Tse, J. Brog. Theor Phys Suppl.200Q 138 47.
(57) Tse, J. S.; Uehara, K.; Rousseau, R.; Ker, A.; Ratcliffe, C. I.; White, M.
surface. The actual method A.; Mackay, G.Phys Rev. Lett 200Q 85, 114.

we choose to use is the-Huckel method’-58 a tight-binding ~ (58) 18,3, Frapper, G.; Ker, A; Rousseal, R Klug, CRiys Rev. Lett

(59) In the‘ugiHUckéI energy surfaces of Figure 2, one can see the onset of an
(47) Pettifor, D. G.; Podloucky, RPhys Rev. Lett 1984 53, 1080. additional energy minimum at low values ©f. The source for this error
(48) Pettifor, D. G.Solid State Phys1987 40, 43. is well understood. The,-Huckel Hamiltonian is most accurate when

(49) Lee, SAcc Chem Res 1991, 24, 249,

comparing structures with reasonably similar coordination numbers. It has

(50) Lee, SJ. Am Chem Soc 1991, 113 101. been proven to give qualitative and semiquantitative energies when
(51) Cressoni, J. C.; Pettifor, D. Q. Phys: Cond Matter 1991, 3, 495. contrasting one alloy structure with another. Therefore in Figure 2, it is

(52) Lee, S.; Foran, Bl. Am Chem Soc 1994 116, 154.

(53) Lee, S.; Hoistad, LJ. Alloys Comput19

not useful when comparing the two-coordinate linear chain structure found
95 229, 66. for c/a = 0.6 to the twelve- or fourteen-coordinate fcc and bcc structures

(54) Hausermann, U.; Nesper, R. Alloys Comput1995 218 244. found atc/a = 1.4 and 1.0.
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Figure 4. Jahn-Teller energetics for an octahedral molecule. Ekevel
is shown, with an electron occupation corresponding’to

Calculational Methods

Local density approximation (LDA) DFT calculations were carried
out with the Vienna Ab Initio Simulation Package (VASP)% using
the ultrasoft Vanderbilt pseudopotentfalprovided by the package.

andy is a proportionality constant. The densg{E,r) is found from

the diagonalization of the Hamilton matrix. Diagonal elemeHis,are

set equal to prescribed Coulombic integral values, while off-diagonal

elements are based on the Wolfsbekglmholz approximatiof? Hj

= 1,KSj(Hii + Hj). The parameteK is generally set to 1.75 arf§ is

the overlap integral between the atomic orbitasd]. Atomic orbitals

are assumed to be single or douljlexpansion Slater-type orbitals.
For the elemental systems the atomic parameters are the same ones

used effectively in previous work on transition metal alloys and main

group system&7° Since the only previous transition metatHiickel

parameters developed have been for first row elements, we used these

parameters again herét;j(4s)= —9.10 eV,H;(4p) = —5.32 eV,H;(3d)

= —12.60 eV;{(4s)= {(4p) = 1.9, £1(3d) = 5.35 (0.5505);2(3d) =

2.00 (0.6260). In the case of Talr it has been determined that the

difference of energy in thel-orbitals is approximately 6 e¥, and

therefore the Ir Coulombic integrals were placed 6 eV lower than their

Ta counterparts. However, within a single element the difference

between thes, p, andd orbitals was maintained as above. Thus, Ip,

andd Coulombic integrals were set at14.45,—10.95,—7.17 eV and

their Ta counterparts were a8.45,—4.95,—1.17 eV. Slater exponents

were also left unchanged. In the case of I&€4p) = —9.00 eV and

¢(4p) = 1.85 (the reason for introducing this main group element will

be given below). While our choice of parameters might seem arbitrary,

it meets the criteria of what we wana minimally complicated model

that allows for both electron count differences and ionicity.

Plane wave basis sets were used in the high precision mode. This The parametey was determined from the condition that the total
corresponds to plane wave energy cutoffs of 218.3, 235.3, and 247.8energy,Er, should be a global energy minimum for bee and fec cells

eV for respectively Ta, W, and Ir. The Brillouin zone sampling was
done by the Monkhost-Patkk points grid (15x 15 x 15 mesh).

with the sizes stipulated below. For calculatingHUckel energies either
a 900 special poifit rectangular mesh or a 1000 special point

Partial occupancies of wave functions were made based on theorthorhombic mesh was used. For calculatitBsar (to be defined

tetrahedron method with Bl correctiorf?
The u,-Hiickel metho@4"58 is based on a tight-binding ap-
proacht?-1568-76 \where we express the total enerdt, as

Er(r) = U(r) — V(1)
where U(r) is a hard-core interatomic repulsion enerdr) is an

attractive bonding energy, amds a parameter dependent on the size
of the system. The total enerd@t can be expressed as

Er=7 [ (E-E.g?E N dE+ [ Ep(E ) dE

below) we used a 10% 101k-mesh for two-dimensional systems and
a 51x 51 x 51 mesh for three-dimensional systems. For Figure 2, we
considered all overlap interactions between atoms less than 10 A apart.
For all other tight-binding calculations we considered overlaps between
atoms less than 3.1 A apart. This lower value limits the overlaps to
first nearest neighbors for the square net and fcc and to first or second
nearest neighbors for bcc.

As will be shown in the textAEsw,is almost nondifferentiable near
the Fermi surface. This is especially true for the perfectly square or
cubic structures. We distorted slightly the high-symmetry cubic cells
to alleviate this problem. For the three systems so studied, square vs
rectangular, bce vs bet, and fcc vs fct, we shifted the cell axis ratios to

where the integrals represent respectively the repulsive and the attractive®® respectively 1.008, 1.010, and 0.992. For the results of Figures 10,

energy. Hereo(E,r) is the electronic density of states; is the Fermi
energy,Eay is the average energy of the electronic density of states,

12, and 16 we made these same shifts in the correspopgiHgickel
calculations. Thus for these figures we used for a square net ax2.39
2.41 A cell, for the rectangular net a 2.382.42 A cell, for bcc a 2.87

(60) There are alternate tight-binding approaches where one does not as explicitlyx 2.87 x 2.90 A cell, for bct a 2.86¢< 2.86 x 2.92 A cell, for fcc a
consider the symmetry-adapted crystal orbitals when accounting for 3,59 x 3.59 x 3.56 A cell, and for fct a 3.6« 3.60 x 3.54 A cell.

structural distortions. One such approach uses the various moments of the

electronic density of states. In a classic illustration of this thébityhas
been shown that the fourth moment of the bcc structure is much less than
that of fcc and that this difference can account for the difference in energies
between these two structures. In this article we consider directly the
symmetry-adapted crystal orbitals and do not apply such moment-based
analyses.

(61) Kresse, G.; Hafner, Phys Rev. B 1993 47, 55.

(62) Kresse, G.; Hafner, Phys Rev. B 1994 49, 14251.

(63) Kresse, G.; Furthiiiler, J. Comput Mater. Sci 1995 6, 15.

(64) Kresse, G.; Furthiiiler, J. Phys Rev. B 1996 54, 11169.

(65) Vanderbilt, D.Phys Rev. B 199Q 41, 7892.

(66) Monkhost, H. J.; Pack, J. Phys Rev. B 1976 13, 5188.

(67) Blochl, P. E.; Jepsen, O.; Andersen, O.Rhys Rev. B 1994 49, 16223.

(68) Cohen, R. E.; Mehl, M. J.; Papaconstantopoulos, [(Ri#ys Rev. B 1994
50, 14694.

(69) Mehl, M. J.; Papaconstantopoulos, D.Phys Rev. B 1996 54, 4519.

(70) Cerdal.; Soria, FPhys Rev. B 200Q 61, 7965.

(71) Foulkes, W. M. C.; Haydock, RPhys Rev. B 1989 39, 12520.

(72) Cohen, R. E.; Stixrude, L.; Wasserman,Fhys Rev. B 1997, 56, 8575.

(73) Ordejm, P.Comput Mater. Sci 1998 12, 157.

(74) Ortega, JComput Mater. Sci 1998 12, 192.

(75) Frauenheim, T.; Seifert, G.; Elstner, M.; Hainal, S.; Jungnickel, G.; Porezag,
D.; Suhai, S.; Scholz, RPhys Stat Sol B 200Q 217, 41.

(76) Elstner, M.; Frauenheim, T.; Kaxiras, E.; Seifert, G.; SuhaRIgs Stat
Sol B 200Q 217, 357.
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For Figure 11 we use two equivalent density cells vaiti 2.88 A for

bce anda = 3.628 A for fcc. The band diagrams in Figure 14 are for
ana = 2.88 A bcc cell, and a 2.86 2.86 x 2.934 A bct cell. In
Figure 18 the fcc cell haa = 3.56 A and the fct cell is 3.6& 3.60

x 3.48 A. As energies near saddlepoints and minima are dominated
by the quadratic term in their Taylor expansion, we can estimate the
error introduced by these slight misrepresentations of the square, bcc,
and fcc structures. In Figures 10, 12, and 16 the differences in energy
are roughly 25% too small. This in no way affects the qualitative
understanding derived from these calculations.

Discussion

Jahn—Teller Effect for a Solid. Static molecular Jahn
Teller distortions are caused by strong electronic-vibrational

(77) Wolfsberg, M.; Helmholz, LJ. Chem Phys 1952 20, 837.

(78) Summerville, R. H.; Hoffmann, Rl. Am Chem Soc 1976 98, 7240.
(79) Hoistad, L. M.; Lee, SJ. Am Chem Soc 1991, 113 8216.

(80) PyykKg P.; Lohr, L. L.Inorg. Chem 1981, 20, 1950.

(81) Chadi, D. J.; Cohen, M. LlPhys Rev. 1973 BS,.
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coupling. There are several equivalent ways to describe what
transpires; the one we choose is an orbital-based description
In this language, the JaktTeller phenomenon is characteristic
of a set of partially occupied highest occupied molecular orbitals
(HOMO). In general these energetically degenerate HOMOs
belong to the same irreducible representation of the molecular
symmetry group. The distortion (an excursion along a normal
mode) lifts the degeneracy. Solid-state equivalents of the-dahn
Teller effect are well-known. The best studied are the Peierls
distortior??2 and charge density waves (CDW#28® There is,
however, one notable difference between the molecularJdahn
Teller effect and the Peierls or CDW distortidn.the former
case the lost symmetry element is a point group operation
the latter it is a translationln the bcc, fcc, and bct cells, while
the conventional crystallographic cells have more than one atom,
the primitive cells all have only one atom each. Hence in going
from bcc to bct to fec, there is no loss of translational symmetry.

To analyze the effect of change of symmetry on these systems

we must turn to the full space group of the crystal and not just
its translational portion.

We recall that a crystal orbital is a Bloch functiox = (1/
VN)3 €Ki ¢y, wherek is the k-vector,; the atomic positions,
and ¢; the atomic orbitals. If we now apply a point group
operation of the crystaR, to this Bloch function, we find:

R®y = R{«/_]kl zeip'?j ¢]} = ﬁ zeiR.RTj R¢j =
1 1 i —l_'.?J o N
N2 28 = Pk

In the penultimate equality we use the fact that a dot product
is proportional to the angle between two vectors; thus if one
rotates just one of the two vectors in the dot product dsHij
this is equivalent to rotating the other vector in the dot product
by an equal and opposite rotation asRntk-;.

As the above expressions demonstrate the equalifgdef
and ®r-%, the point group operation mag; onto ®g%, and
hence these two Bloch functions belong to the same irreducible
representation. Furthermore, by definiti&t! is also an element
of the same point group. It is conventional to call the set of
vectors{ RK, whereR is any point group operation component
of a space group element, a star of reciprocal vectork?®

A Two-Dimensional Model. We now consider howsi-can
help in the analysis of a JahiTeller distortion in a solid, i.e.

a distortion in which the point group portion of the space group
is changed but where the translational portion remains unaf-

kR ¢,=

fected. To understand the situation we need to go back to a

simpler model than our three-dimensional lattice, yet one which
captures the physical essence of the phenomenon. In this spirit
consider a simple square net of germanium atoms that undergoe

a distortion to a simple rectangular net. This distortion is .

illustrated in Figure 5. For the sake of simplicity we restrict
the valence orbitals to themanifold and assume (in the spirit
of a Hickel model) that there is interaction between nearest
neighbors only. In such a case there is no mixing between the

(82) Peierls, R. EQuantum Theory of Solid€larendon Press: Oxford, 1955.

(83) Wilson, J. A.; DiSalvo, F. J.; Mahajan, 8dv. Phys 1975 24, 117.

(84) Monceau, P.; Ong, N. P.; Portis, A. M.; Meerschaut, A. M.; Rouxel, J.
Phys Rev. Lett 1976 37, 602.

(85) Canadell, E.; Whangbo, M. KChem Rev. 1991, 91, 965.

(86) Lax, M. Symmetry Principles in Solid State and Molecular Physics
Wiley: New York, 1974.
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Figure 5. Distortion of a square to a rectangular net.
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Figure 6. Energy contour map of square mgtpy, andp, orbitals. Energies
are color coded. Red corresponds to bonding, green to nonbonding, and
blue to antibonding.

Px. Py, andp; sets. The energies of the Bloch crystal orbitals
are illustrated in Figure 6. These energies are simply understood.
For example, foipy the lowest energy orbital is &= (*/2, 0)

’gmd the highest energy orbital iskat= (0, /,) as these orbitals
are respectively purely bonding @ndzr) and purely antibond-
ing. Similarly, at these sam&-vectors, thep, orbitals are
nonbonding.

In the undistorted square net a°9®tation is a symmetry
operation, and = (%,, 0) andk = (0, ¥/,) belong to the same
ksiar Thus, thep, based crystal orbitals at these twepoints
belong to the same irreducible representation. But for the
rectangular net a 9Qotation is not a symmetry operation, and
these two orbitals are no longer degenerate. This is shown in
Figure 7a. If we assume a band-filling of three electrons per
atom (e/a) thepy, py, and p, are each filled with a single
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a. Square vs. rectangular net Figure 7, this distortion is further abetted by electron transfer
ketar=(1/2,0) 3e7/a between the formerly degenerate orbitals, from the situation
where both orbitals are filled by one electron to the one where

- one orbital is empty, the other filled.
ig g:g:_%_ +< In studying extended solids, we therefore focus on orbitals
which by symmetry are degenerate in the high-symmetry
& structure but are not degenerate in the low-symmetry structure.
As in Figure 7, we restrict ourselves to electron transfer between
these symmetry related orbitals. In the language of the solid
state, we restrict electron transfer to that betweenkwectors
belonging to the samle,r(see above). We keep the number of
electrons in eactksr fixed and calculate for eacks, the
difference in energy between the undistorted and distorted
- geometry. The number of electrons in edgh, is set equal
to that found in the undistorted structure. We call this energy
AEsia(K) or just AEsia: The total difference in energy can be
obtained by integrating this function.
In considering thisAEg function, we make the assumption
that it is the interplay between crystal orbitals which are related
- to one another by symmetry that plays a central role in the
ﬁ ﬁ Lt Jahn-Teller energetics, rather than crystal orbitals which are
just accidentally degenerate. This is a strong assumption, as in
& metals there is in general a two-dimensional surface of states
which are accidently degenerate. Indeed, it is known that such
accidental degeneracies can play a considerable role in metal
and alloy phonon structurg.87:88
ﬁ In Figure 8 we show thif\Eg, function for two different

b. Dan vs. Doy, cyclobutadiene

" " bandfillings, 1.2 and 3.0#a (electrons per atom). (We choose
these two band fillings for as we show below, they correspond
. B to the electron counts where there are cuspskg,:) For both,
Figure 7. Effect of rectangular distortion () on the k = (0, /) andk the AEsw,is nearly zero, except at several well-defingd: As
= (dllzi:)O)f orbri]tals o[)_a s;qu?re n:etl;‘or ezj_band filling of 3 electrons per atom may be seen in Figure 8, these peaks have the form of ridges.
and (b) for ther-orbitals of cyclobutadiene. It is especially instructive to compare these ridges with the
) ) ] ] contour maps of the crystal orbitals, shown previously in
electron, all bonding orbitals are filled, and all nonbonding Figyre 6. In particular, we need to concentrate on the contour
orbitals are half-filled. For this number of electrons, Figure 7a lines in Figure 6 which correspond to the highest occupied
begins to resemble a conventional diagram for the molecular yqjecular orbitals, i.e. the orbitals at the Fermi energy. Consider
Jahn-Teller effect. Thus at 3.0°¢a, there may be a Jahn  first 3.0 e/a, where the,, p,, andp; orbitals are all half-filled.
Teller effect stabilizing the rectangular geometry. ~ For this case, the contour lines which correspond to the highest
The picture in Figure 7a is thus reminiscent of the classic occypied molecular orbitals are purely nonbonding. They are
molecular JahnTeller system, cyclobutadiene. In cyclobuta- e pyre green lines of Figure 6 and they are only partially filled
diene there are four molecular orbitals (Figure 7b) and four  \yith electrons. For thep, crystal orbitals, these nonbonding
-electrons. The shape of theseorbitals is completely  ojecular orbitals correspond to the straight contour line that
determined by symmetry. Were cyclobutadiene to adopt a squarens from the upper left of Figure 6¢ to the lower right.
geometry there would be one bonding, one antibonding, and  \yhen one compares the green contour lines of Figure 6 with
two nonbondingz-orbitals. In a square geometry these two e AE,,, function for 3.0 e/a, shown in Figure 8, we see
nonbonding orbitals are degenerate and half-filled. Under a something interesting. The ridges in A& function are at
distortion fromDan to D2, symmetry this pair of orbitals splits exactly the same location as the green contour lines. Why should
into two: one orbital becomes weakly bonding, the other g,cp g correspondence exist? Recall that at 3/@ the green
antibonding. The classic rationalization for why cyclobutadiene ¢oniour fines indicate those orbitals which are only partially
has aDon ground-state geometry is that in this latter geometry fjjieq with electrons. Recall also that thEq function groups
all the zr-electrons are in bonding orbitals. together the orbitals which are related to one another by
The strong similarity between the square and rectangular netsymmetry. The correspondence of the contour lines and the
orbltals_ shown in Flgur_e 7a and the cyclobutadiene orb|tal_s ridges of theAEga function tell us that both partial orbital
shown in the center of Figure 7b suggests a strategy to quam'fyoccupation and the grouping together of symmetry equivalent
potential Jahr Teller effects in extended solids. Itis one which  oppitals are important.
retains, as much as possible, the feel of molecular Jakefler To understand why this is so, consider again cyclobutadiene

theory. In Figure 7, we saw for both molecule and extended (see Figure 7b). In cyclobutadiene’s square geometry there are
net the driving force for distortion is a pair of orbitals which

R ivho f (87) Varma, C. M.; Weber, WPhys Rev. B 1979 19, 6142.
are degenerate in the high-symmetry geometry but have dlfferent(sg) Herper. H. C.: Hoffmann, E.- Entel, P.. Weber, WPhys IV 1995 5,

energies in the low-symmetry structure. In the cases shown in C8-293.
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a.l2e/a b.12ela i

d.3.0e/a

Figure 8. AEswa, for a square vs a rectangular net: (a and b) at 1.2 and (c and d) at/a.0 e

two partially filled symmetry-relatedonbonding orbitals. Under  the square net is alternant (by alternant we mean there are no
the rectangular distortion they split apart in energy: one orbital odd member rings of bonded atoniAt the Hickel level, this
becoming slightly bonding and the other slightly antibonding. results in a pairing of filled and unfilled levels; thueEg,, at
Given the initial partial occupation of these two orbitals by just 4.8 e /a (1.2 holes per atom) is by symmetry the same as that
two electrons, the slightly bonding orbital is filled and the at 1.2 e/a.

slightly antibonding orbital is unfilled: the system is stabilized. ~ The explanation for the relative heights of these ridges may
For the same phenomenon to occur in the solid state, just ashe found by examining thehapeof the orbitals in_theKstar
in cyclobutadiene, one needs again partially filled symmetry- themselves. We consider first the 1.2&@system. Ak = (Y5,
related orbitals. There must be a set of originally degenerate 1/,), the two energetically degenerate Fermi surface orbitals are
orbitals which are energetically split apart by the distortion: thep, andp orbitals. Thep, orbital, shown at the left of Figure
some going down in energy and others going up in energy. This 9, is g-bonding in the horizontal direction, bat-antibonding
set of orbitals must be partially filled so that the energy in the vertical direction. The converse is true for fierbital.
stabilization found from the set of stabilized orbitals is not under the rectangular distortion, horizontal interactions become
counteracted by occupation of the others. In the case of thestronger and vertical interactions weaker. As theorbital is
square to rectangle distortion for 3.0/a, the partially filled  ponding in one direction and antibonding in the other, such a
orbitals are the orbitals which correspond to the green contour gistortion causes a large decrease in crystal orbital energy;
lines in Figure 6. The symmetry-related degenerate orbitals similarly, thep, orbital increases in energy. The result is a large

correspond to the individud: Hence it is only these green  griving force for the JahnTeller effect associated with this
contour orbitals and theka related orbitals that cause the solid-  pajr of orbitals at this particular electron count.

state Jahn Teller distortion.

However, Figure 8 also shows that not all Fermi surface states
contribute equally t\Esis (in @ metal the HOMO orbitals are
said to be on the Fermi surface). At 1.2/&, the ridge in the
AEg function is highest wherég,, is (M2, 1/2) while at 3.0
e /a, the ridge is highest at/f, 0). Actually, these band fillings
are not just pedagogical examptese have surveyed the full
range O_f electron populations and these two band-fillings are (89) Coulson, C. A.; Rushbrooke, G. Broc. Cambridge PhilasSoc 194Q
those with the largest values AEs,: It should be noted though 36, 193.

For 3.0 e/a the most energetically important orbitals are the
p; orbitals atk = (Y,, 0) and (0,Y,). These were shown in
Figure 7a. One member of this pair of orbitals is bonding in
the horizontal direction and antibonding in the vertical direction,
while the opposite is true for its partner orbital. Again, the result
is a large associated Jahmeller effect.
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12678 Kega=(1/2,1/2)

Figure 9. Effect of rectangular distortion of a square net on phendpy
k = (Y, ¥,) orbitals for a band filling of 1.2 electrons per atom.
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These are exactly the electron counts discussed in the preceding
paragraphs. As Figure 10a shows, the magnitude of this
difference in energy is controlled by the size of the distortion.
As the square netb(a = 1.0) is an energetic saddlepoint, we
expect that the quadratic term will dominate a Taylor series
expansion around the saddlepoint geometry. This quadratic
relation roughly holds betwedria = 1.02 and 1.05, but is less
correct at higheb/a values.

In Figure 10b, we compare directlyE,» with AEs, for b/a
= 1.02, where we have integrated the latter function over
k-space® It can be seen that the two functions are quite similar.
Both functions have sharp spikes near 1.2, 3.0, and 4/8. e
The functions differ by an approximately parabolic function that
is greatest at the half-filled band and zero at the band edges.
Such an error is expected, as we have not made an interatomic
repulsion correction ithEg,,but have inAE,,. Such a correction
is expected to be parabofg.

Finally, in Figure 10c we compare these difference in energy
curves with the electronic density of states (DOS). It is
conventional to plot the DOS as a function of the Fermi energy.
Here we plot the DOS as a function of band-filling. In this way
we can directly compare parts b and c in Figure 10. We see
that the band fillings with the largest Fermi surface, i.e. the
greatest number of highest occupied molecular orbital states,
are the same band fillings for which the Jateller distortion
is strongest. The shape of the density of states can be understood
by reexamining Figure 6. It is precisely at these electron
concentrations where the contour lines intersect the corners of
the diagrams. These corners are high symmetry points in
k-space, where bands in the band diagram have zero $lope.
Therefore, it is at these electron counts where not only the Fermi
surface contour lines are longest, but also the Fermi surface
contour slopes are flattest. Consequently it is at tikegeints

more stable

where the electronic density of states is highest.

However, our preceding analysis at 1.2 and 3.faeshows
that this correspondence is somewhat misleading. As we
discussed earlier, it is not the length or width of the ridges in
AEsir Which are important, rather it is the magnitude of the
major peaks in these ridges. A similar phenomenon is found
for molecular Jahn Teller distortions. For example, in transition
metal octahedral complexes there are ttisgerbitals and only
two ey orbitals, but it is thee,-based JahaTeller instabilities
which have the greatest distortiotfsThe reason for this is
clear—the g levels ares-antibonding, thexg levelso-nonbond-
ing (or w-antibonding if the ligands are donors).

e/a 6 If it is a coincidence that the electron fillings with the largest
Figure 10. (a) Difference in,uz_-H'L]Ckel energies between the square net  glactronic density of states are also the ones widtg,, has

and a rectangular net. Negative values correspond to the rectangular net . . .
being more stable. (b) Comparison A&, and AE, for the square vs 't_s largest \_/alues' What is the reason for it? Agaln W'Pj turn to
rectangular i/a = 1.02) net. Note the\E-scale is different from Figure Figure 6. Itis the orbitals at the corners of the diagrams in Figure
10a. (c) The square net electronic density of states as a function of band6 that are maximally bonding and antibonding. And more to
filling. the point, it is at the corners where orbitals are maximally
bonding along one axis direction and antibonding along the
other.AEg,is therefore maximized when these corner orbitals
lie on the Fermi surface. Similarly it is the contours which pass
through these same corner states which are both flattest and

0 3

AEgis also useful in analyzing the total difference in energy.
In Figure 10a, we show the results oftgHiickel calculation
for the square and rectangular net. Plotted is the difference in
energy between these two structursg, », as a function of band
filling. The curves are plotted so that a positive value corre-
sponds to the square net being more stable and a negative value ~ Teller distortion itself and hence the energetic behavior near the high-
to the rectangular net being more stable. It can be seen that,,, Symmety structure.

. (91) Ashcroft, N. W.; Mermin, N. DSolid State Physi¢cdHolt, Rinehart and
near 1.2, 3.0, and 4.8 &, the rectangular structure is preferred. Winston: New York, 1976; p 145.

0) We choose such a small distortion as the interest in this paper is the Jahn
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Figure 11. Difference inux-Huckel energies between bcc and fcc. Negative
values correspond to the fcc being more stable. Indtdoaly model, the
d-band electron concentration is multiplied #yto simulate partiag-band

fillings. 0 5 e/a 10
longest; this is where one finds the greatest values of the F9ure 12. (@) Difference in energies between bcc and lofa € 1.02)
. . using ad-orbital only model. Negative values correspond to bct being more
electronic density of.stat.es. . _ stable. Differences in energy are per atom. (b) Electronic density of states
Thus the corners in Figure 6 determine both the maximum for bee given as a function al-orbital band-filling.

values of AEg,r and the maxima in the density of states. This
accounts for the agreement between parts b and c in Figure 10in the Pettifor results. It suggests that for such late transition
We note thak-vectors such aE, (M2, 0), (0,172), and &2, Hy) metal elementss- and p-orbital effects must be explicitly
are often the places where orbitals are maximally bonding or considered.
antibonding. This is especially true for simple systems. Thus In the systems shown in Figure 2, the average electron
although it is a coincidence that there is a correlation between concentrations are 6 & while for Re and Talr the concentration
AEsiyr and the density of states, it is a coincidence that will is 7 e/a. At such lower electron counts, crorbital model
frequently occur. captures the principal energetic features. As our goal is to
With the experience gained from this two-dimensional explain, using the simplest picture possible, the energetics of
problem, we are ready to apply theéEq,-analysis to the three-  these lower electron count systems, we consider here, as had
dimensional problems of central interest to us, the structure of Pettifor, near neighbod-orbital interactions alone.
metals and alloys. We consider first the stability of the bcc net with respect to
Bcc to Bet Distortion. Group 3 and 4 transition metal a bct distortion¢/a= 1.02), see Figure 1i. We show the results
elements adopt the hcp structure, group 5 and 6 elements theof both au,-Hiickel calculation and an integratédEs:., function
bce structure, nonmagnetic group 7 and 8 elements the hcpfor such a distortion in Figure 12a. As can be seen, the two
structure, and nonmagnetic group-31 elements the fcc  functions closely track one another. The bcc undistorted structure
structure?? In accounting for these facts it is clear that the is preferred near Sl-electrons per atom, but from 6 to 9
valences-, p-, and d-orbitals can all potentially play a role. d-electrons per atom the bct distortion is lower in energy.
However, it is well established that it is thkorbitals which Recalling the approximate factor %§ necessary to convert these
are most important. Thus Pettifor has used a near neighborband-fillings to periodic table group numbers, these results
d-orbital model to correctly determine differences in energy suggest that group 5 and 6 transtion metal elements in the bcc
between the bcc, fce, and hep systéfhblis results agree with  structure are not JahiTeller unstable, but that group 7 and
the above experimental findings with one exception: near the above elements are Jahmeller unstable. This is borne out
completely filledd-band, Pettifor's calculations suggest that bcc experimentally. All nonmagnetic transition metal elements
is preferred over fcc. belonging to group 7 or higher or group 4 and lower adopt
In Figure 11 we present the resultsiefHuckel calculations closest packed structures, while group 5 and 6 elements adopt
comparing the fcc and bcc structures. Two different models are the bcc structure. These results cannot be used to distinguish
presented. In the first, a full set af, p-, and d-orbitals is the fcc from the hcp structuré$,but as fcc and hcp are
considered, while in the second ondlyorbitals are used. To  structurally similar, the differences in energy between them are
directly compare these calculations we need to assign thesmall when compared to their differences in energy with respect
occupancy of thes- andp-bands in thel-orbital model. We do to the bcc structure. We can therefore assume that the hcp vs
so by making the simple assumption that thband remains bcc energies are fairly similar to the ones shown in Figure 12.
unfilled and that thes-band occupation is proportional to the That this is so is verified by Pettifor's original results on the
d-band occupation. We therefore multiply tHeband electron  fcc, hep, and bec structures. In his work, the differences in
concentration by/s to determine the appropriate/a level. As energy between fcc and bcc were five times greater than those
Figure 11 shows, the two models are comparable. However, between fcc and hcp.
near the filleds- andd-band limit, thed-orbital model has bcc We can compare these energy difference curves to the
too stable with respect to fcc. This is the same error as found electronic density of states plotted as a function of electron

(92) Massalski, T. B.; Okamoto, H.; Subramanian, P. R., Batary Alloy Phase (94) Hcp has two atoms in its primitive cell. Hence any study comparing-Jahn
Diagrams 2nd ed.; American Society for Metals: Metal Park, OH, 1990. Teller instabilities of fcc with respect to hcp requires the use of both

(93) Pettifor, D. G.Bonding and Structure of Molecules and Sali@xford rotational and translational symmetry elements, a study outside the compass
Science: Oxford, England, 1995; pp 22326. of the present work.
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M, {k = (Y2, Y12, 0)} they are still within 0.06 eV of one another,
atMy {k = (0, ¥, 1/,)} they are separated by almost 0.3 eV, a
large change considering that the nearest neighbor bond
distances have shifted by only 0.004 A and second nearest
neighbor bond distances by 0.05 A.

The origin of this large energy splitting can be understood if
we examine the actual orbitals kl. These are shown to the
right in Figure 14b. Here we show per band just one of the pair
of degenerate orbitals. The lower energy orbital has nearly
perfectd,z atomic orbitals at the unit cell corners, and a smaller
dx; atomic orbital at the body center. The higher energy orbital
is related by a 90rotation to the lower energy orbital.

In a bee cell, the nearest neighbor interactions are between
the atoms at the cell corner and the atoms at the body center.
Second nearest neighbor interactions are between atoms at
adjacent corners. Consider the first nearest neighbor effects. The
key point here is that while the body centg orbitals are
pointing in ac fashion to the cell corners, the corner atoms are
of d2 anddy2 type. These latter orbitals havesanodal cone at
azimuthal angles of 54 But that is precisely the angle at which
the body center atom sits. Hence in bcc there isHiateraction
between first nearest neighbors. If we now consilar> 1.0,
the body center atom no longer sits on the nodal cone. The
lower and higher energy crystal orbitals become respectively
o-bonding and antibonding.

fw. s

015+

AE (eV)

¥ With respect to the second nearest neighbor interactions, the
Figure 13. AEsarfor 7.8 e/a for bee and beta = 1.02) using ak-orbital lower energy orbital is seen as principally antibonding along
igure 13. starfOr 7. 1 I =1.02) usi -orbi . - .o
only model for (a)k = (0, ky, k) and (b)k = (0.2, ky, k. the z direction and then weakly bonding in thg-plane. By

contrast the higher energy crystal orbital is net antibonding in

concentration. This latter curve is shown in Figure 12b. As in thexy-plane. The bct distortion being considered is one where
the case of the square to rectangular distortion discussedc/a > 1.0. Hence the cell is stretched along #irection and
previously, there is a coincidence between the electron countscontracted in thexy-plane. Therefore, second nearest neighbor
which are Jahr Teller unstable and the electron counts which €ffects also cause a substantial Jafieller splitting. In sum-
have the largest Fermi surface area. The two maxima in the Mary both firstand second nearest neighbor effects conspire to
density of states are found near one and etjbtectrons per ~ Produce a maximal JakmTeller splitting at 7.8 e/a at the
atom. Conversely, the minimum Fermi surface is found near K-POINtM.
five d-electrons per atom, the electron concentration where there  Fcc to Fct Distortion. The above results give a clear picture
is no Jahr-Teller driving force. of the Jahnr-Teller instabilities of the bcc structure. They suggest

These coincidences can again be accounted for by examiningonly group 5 and 6 elements should be found in the bcc
the AEg function. We consider here 7.8/, the band-filling structure. This is confirmed experimentally: the only bcc
where the driving force to the distorted bt structure is strongest. transition elements are V, Nb, Ta, Cr, Mo, and W. But the above

At this electron countAEgi, has a maximum nede= (0, 1, analysis is not complete. All we have shown so far is that group
U3), ak-point traditionally termedv1.%¢ In Figure 13a, we give 7 and higher or group 4 and lower elements are Jdreller
AEg for the planek = (0, ky, k;). It can be seen thakEis unstable in the bcc structure. It is possible that closest packed

nearly zero except arourM. This peak extends quite far inthe  structures are JahiTeller unstable as well. We therefore turn
k, direction. Even in thé = (0.2,ky, k,) plane, see Figure 13b,  to distortions of a fcc cell. We consider face centered tetragonal
it is still quite prominent. (fct) distortions to this fcc cell. This is illustrated in Figure 15.
As in the previous two-dimensional example, we can trace In Figure 16a we compare the differences in energy between
the origin of this peak to the corresponding crystal orbitals. In an fcc cell and an fct celc(a = 0.98), using both the,-Huickel
Figure 14a we show a portion of the band diagram for a bcc method and an integratefiEst,r function. As in the previous
cell betweenM and R {k = (Y, 1>, 1/2)}. We choose this  cases, the two functions closely track one another. It is also
segment ofk-space as it is along this direction thAEg, is instructive to compare Figure 16a with Figure 12a. It may be
large. All the bands betweeW andR are doubly degenerate.  seen that the two figures are complements of each other. At 4
Two of these bands track closely to one another, never differing or 5 d-electrons per atom the fcc structure is unstable with
in energy by more than a few hundreths of an electronvolt. At respect to a flattened tetragonal cell but at the same electron
M they have an energy 6f10.64 eV, the Fermi energy of the  count bcc is stable. By contrast at 6 ta®lectrons per atom
7.8 e /a system. In Figure 14b we consider this same region of bcc is unstable with respect to an elongated tetragonal cell but
k-space, but with a bct cell with@a axis ratio of 1.026. Under  fcc is stable. A sufficiently flattened fct cell is bcc, just as a
this bct distortion, the bands remain doubly degenerate, but thesufficiently elongated bct cell is fcc. Hence these results are
two bands no longer track each other quite as closely. While at compatible with 4 or Si-electron per atom cells flattening until

4820 J. AM. CHEM. SOC. = VOL. 124, NO. 17, 2002



Bcc and Fcc Transition Metals and Alloys

ARTICLES

4. cubic

-10.64 oV
-10.75

~ {7

~11

b. tetragonal

-10.75

-10.64eV

-11

Figure 14. Band diagram for thel-orbital only model between M and R,(a) for bcc and (b) for léa & 1.026). The Fermi energy of the 7.8/a bcc
system is—10.64 eV. The key orbitals fohEs, are indicated by arrows. For the sake of clarity body center atomic orbitals have been increased by 20%.
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Figure 15. Danto Opto Dap distortion for a face centered tetragonal lattice.
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Figure 16. (a) Difference in energies between fcc and fofa(= 0.98)
using ad-orbital only model. Negative values correspond to fct being more
stable. (b) Electronic density of states for fcc given as a functiaharbital

band-filling.

they become bcc and-® d-electron per atom bct cells
elongating until they are ideally fcc. Recalling that at the half-
filled band there is approximately one electron insaorbital
per atom, these results suggest that at/@,ebcc should be an
energy minimum structure and fcc a saddlepoint, while at 7 As there is no interaction between a real and an imaginary
e /a, the roles of bcc and fcc should be reversed. As W has 6 orbital, and as in this case the real and imaginary coefficients

e /a and Re and Talr an average of 7/& these qualitative
theoretical calculations match precisely the DFT results il-
lustrated in Figure 2.

In Figure 16b we show the electronic density of states as a
function of band filling. In contrast to the preceding cases, we
see there is little agreement between the maxima and minima
of parts a and b of Figure 16. Recalling our analysis of the
source of these coincidences, we therefore anticipate that the
key k-vectors forAEgw, do not lie at the corners ik-space.
That this is so is verified by explicitly calculatingEsat 4.2
d-electrons per atom, the electron concentration with the greatest
driving force for the fct distortion.

The principal fegtures in the fcc to ftEs, landscape are a
plateau found nedc = (Y4, Y/4, /4) and a circular ring of states
betweerk = (Y4, ¥4, 4), (0.37, 0.37, 0.37), and (0.5, 0.3, 0.3).
These are illustrated in Figure 17. We may account for these
features by examining the corresponding crystal orbitals. In
Figure 18a we present a band diagram betwleandR. It can
be seen that along this segmenkedpace there are two sets of
degenerate bands at the Fermi energy-.9 eV. There is a
doubly degenerate band nelar= (Y4, Y4, %4), and a triply
degenerate band near (0.37, 0.37, 0.37). Under a small fct
distortion toc/a = 0.97, these bands split by respectively 0.4
and 0.3 eV (see Figure 18b).

Again we turn to the shapes of the crystal orbitals to account
for this splitting. As these orbitals do not lie at special points
in k-space, the corresponding crystal orbitals have complex
coefficients. To give understandable graphical representations,
we substitute the orbitals & most closely correlated to the
true orbitals at (0.37, 0.37, 0.37). These are shown to the right
of Figure 18b. As may be seen in this figure, the lower energy
orbital iso-bonding along thg + z direction across thgzface
of the cubeg-bonding along thex + z direction across thgz
face of the cube, but-antibonding along the — y direction
across thexy face. Similarly, the higher energy orbital is
antibonding along the direction buto-bonding along thex +
y direction across they face. A flattening of the unit cell splits
these two orbitals apart, the classic Jafieller scenario. A
similar diagram can be made at (0.5, 0.3, 0.3).

The orbitals ak = (Y4, Y4, ¥4) are also complex, but here
atomic coefficients can be made purely real or purely imaginary.
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Figure 17. AEsafor 4.2 e/a for fcc and fct ¢/a = 0.98) using al-orbital only model for (a) thé = (kx, ky, 0.25) plane and (b) the= (kx: ky, 0.37) plane.

g cubic a =-13.10V b E=-127eV
3
’}\; 2
W 3
-12
E=-129eV 2 2 /
3
-15
r Figure 19. Real portion of fct ¢/a = 0.97) orbitals ak = (M4, Y4, Ya).
b. tetragonal
- consider the relevance of the above theoretical treatment to fully
3_ atomically ordered’ magnetically unorderet,low-temperature
W stablé€? binary transition metal alloys of group 4 through 9
14 elements. We are interested in_ atomically ordered phases, as
e oay these are the ones most easily amenable Fo band structure
s calculations. We restrict ourselves to magnetically unordered,
low-temperature stable phases, as we have not considered spin
5 interactions or entropy effects. Finally we consider only group
‘75F 4-9 binary alloys, since it is only for transition metals of fairly
similar orbital character that the,-Huckel method can be
applied. In Table 1, we list all phases which form in variants of
the bcc, fcc, and bct structures and where the stoichiometries
_ ) ) of the two elements are either 1:1 or 2732 The 1:2 ratio
g?“{grlféc 2?1‘3(1 (g')a?éfr?cio‘g/;hioé?g%l_Oﬂlgmng%?gl iaz?geizﬁtsgdbgn 4 transition metal alloys tend to form in Laves phases and hence
degeneracies. The Fermi energy of the 4.2ébcc system is-12.90 eV. are not often structurally related to bcc, bet, or fec.
Some of the key orbitals ohEs,rare indicated by arrows. Three main structure types are found. The first is the well-

known CsCI structure, a cubic structure with one atom at the
on neighboring atoms are similar, to get a sense of its bonding COMer of the unit cell and the other atom type at the body center.

nature, we can portray just the real portion of the orbital. These 't 1S an ordered bcc cell. The second is AuCaistructure with

real portions are shown in Figure 19. The lower energy orbital @0 fcC network of atoms, with one atom type on the cubic unit
is zr-antibonding in thexy plane buis-bonding in thez direction. _ceII corner and the_ other on the cell faces. Finally, and most
Its energy is therefore lowered by the fct distortion. The higher intérestingly, there is the HgMn structure, also called the AuCu

energy orbital isr-bonding in they direction butz-antibonding | structure. Urllil_<e the previous two structures, t_his type is
in they -+ z direction. Its energy is raised by the fct distorion, tetragonal. This is an ordered bct arrangement with one atom
causing a large JahTeller splitting. at the cell corner, and the other atom at the body center.

Bcc, Fec, and Bt Binary Alloys. It is well established that _AII three structures are therefo_re ordered variants of bct, see
electron counting rules true for the elements often also apply Figures la and 3. In Table 1 we list for each of the compounds
to their alloy and intermetallic counterpaPt®® Here we

(97) Villars, P.; Calvert, L. DPearson’s Handbook of Crystallographic Data
for Intermettallic PhasesASM International: Materials Park, OH, 1991.
(95) Hume-Rothery, W.; Raynor, G. \lhe Structure of Metals and Allgys (98) Wijn, H. P. J., EdLandoldt-Banstein New SeriesGroup 3 Condensed

Institute of Metals, London: 1962. Matter, Volume 19 Magnetic Properties of MetalSulbvolume a 3d, 44,
(96) Hume-Rothery, WPhase Stability in Metals and Alloy#cGraw-Hill, 5d-ElementsAlloys, and CompoundsSpringer: Berlin, Germany, 1986.
New York: 1965. (99) van Vucht, J. H. NJ. Less CommMet 1966 11, 308.
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Table 1. Atomically Ordered, Magnetically Unordered, Low strate, these curves are complements of each other. Only near
Temperature Binary Bec, Bet and Fee Compounds the nodes of the curves in these figures are distorted bct or fct
compd structure type ea cla cells a reasonable energetic alternative.
TiTc CsCl 5.50 1.00 ;
HfTc CsCl 5.50 1.00 Conclusion
VMn CsCl 6.00 1.00 In studying the interplay of symmetry and crystal energies,
VTce CsCl 6.00 1.00 solid state chemists and physicists have traditionally focused
HfRu CsCl 6.00 1.00 translational iy ol s, In ret titis ol h
Tios CsCl 6.00 100 on translational symmetry elements. In retrospect it is clear why.
ZrOs CsCl 6.00 1.00 The preeminent example of a Jatifeller distortion in a crystal
HfOs CsCl 6.00 1.00 is the Peierls distortiof? a distortion for one-dimensional
Zrco CsCl 6.50 1.00 systems. In one dimension the only point group operation is
HIRh Cscl 6.50 1.00 ystems. | y point group operat
TaRu HgMn 6.50 1.02 the inversion center, a symmetry elgment that due to Friedel's
NbRu HgMn 6.50 1.12 law!% cannot play a strong energetic role A,y
Pth |'_'|'9,\'\A/'” g-gg 11-11;' In higher dimensional crystal distortions, there is generally
ilr gMn . . . .
Mnir HgMn 800 134 Io_ss of bo_th translational and _rotano_nal sfymr_ngtry elements.
NbRus AuCug 7.25 1.41 Given the importance of the Peierls distortion, it is natural that
TiRhg AuCus 7.75 1.41 we should focus on the former and not the latter group elements.
ﬁrf';:}? ﬁﬂgi ;;g i'ﬁ It is nonetheless plausible that by concentrating solely on the
Tilrs ’ AuCus 775 141 translational elements, vital factors governing structural distor-
Zrirs AuCug 7.75 1.41 tions have been ignored.
UfF'efha ﬁugus ;-gg 1-?& Studies involving loss of translational symmetry have demon-
TaRh, Aﬂci 8.00 11 strated the power of maximal Fermi surface nesting, i.e., of
Virs AUCUs 8.00 1.41 k-vectors which maximally couple Fermi surface st&feEhis
Nblrs AuCug 8.00 1.41 can be directly contrasted to the analysis in the current work.
Talrs AuCug 8.00 141 We have found that distortion is not just driven by the number

of Fermi surface states, but also by the propensity of these states
thec/aratio in terms of this bct cell and the average number of and their corresponding orbitals for distortion. Indeed others
e /a. There is a strong correlation between the two. At 5.5 and have found smilar effects, for example, when studying eleetron
6 e /a, thec/a ratio is invariably 1, at 6.5 da thec/a ratio phonon coupling” In one system we studied, fcc vs fct, these
rises from 1.00 to 1.18, and finally above 7.25a& c/a = V2. latter propensities were a more important factor than the area
This trend is in agreement with the results of Figure 12a and of Fermi states. It would be interesting to determine if there
16a. As these figures show, at electron concentrations of 5.5are other systems where both translational and rotational
d-electrons per atom (or equivalently 6.5 valence electrons persymmetry elements play a role and where similar orbital
atom), both the fcc vs fct integratetEs, function and the bcc propensities dominate. In such phases the maximal nesting
vs bct integrated\Egs function go through a node. Hence bece,  vector might not be observed, instead a seemingly lesser nesting
fcc, and bct structures with 1.9 c/a < +/2 are all comparable  vector could be adopted due to its superior orbital interactions.
in energy. It is exactly here that we find the tetragonal HJMn  Acknowledgment. This work was supported by the National
structures. The one HgMn structure that does not obey this Science Foundation (Grant DMR-0073587) and by the Petro-
electron count rule is Mnlr, a phase whose magnetic structure leum Research Fund, administered by the American Chemical
has not been studiel. Society. We wish to thank Dr. Evgeny Todorov without whose

These results also suggest why the tetragonal structures argtrong interest this project would not have been completed.
so much rarer than the cubic ones. For such tetragonal structures

to occur one needs electron counts where both bee and foc arg?A0114557
Jahn-Teller unstable. Instead, as Figures 12a and 16a demon-(100) Friedel, GComptes Rendus913 157, 1533.
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